organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(+)-(1*R*,2*S*,3*R*)-2-[(Benzyloxycarbonyl)methyl]-3-phenylcyclopropanecarboxylic acid

Thomas D. Avery,^a Ben W. Greatrex,^a Dennis K. Taylor^{b*} and Edward R. T. Tiekink^{c*}

^aDepartment of Chemistry, University of Adelaide, 5005 South Australia, Australia, ^bDepartment of Wine and Horticulture, University of Adelaide, Waite Campus, Glen Osmond, 5064 South Australia, Australia, and ^cDepartment of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-0698, USA Correspondence e-mail: dennis.taylor@adelaide.edu.au, edward.tiekink@utsa.edu

Received 14 June 2007; accepted 25 June 2007

Key indicators: single-crystal X-ray study; T = 223 K; mean σ (C–C) = 0.003 Å; R factor = 0.048; wR factor = 0.149; data-to-parameter ratio = 17.4.

In the title compound, $C_{19}H_{18}O_4$, the carboxyl group lies on the opposite side of the cyclopropane ring to the other substituents. Molecules associate *via* (···HOC=O)₂ synthons around centres of symmetry and are linked into double layers by cooperative $C-H \cdot \cdot \cdot O$ contacts.

Related literature

For related literature, see: Avery et al. (2000, 2001).

Experimental

Crystal data $C_{19}H_{18}O_4$ $M_r = 310.33$ Triclinic, $P\overline{1}$

a = 5.5550 (5) A
b = 8.9606 (8) Å
c = 16.6586 (16) Å

$\alpha = 101.698 \ (2)^{\circ}$	Mo $K\alpha$ radiation
$\beta = 98.907 \ (2)^{\circ}$	$\mu = 0.09 \text{ mm}^{-1}$
$\gamma = 92.186 \ (2)^{\circ}$	T = 223 (2) K
$V = 800.11 (13) \text{ Å}^3$	$0.39 \times 0.09 \times 0.08 \text{ mm}$
Z = 2	

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: none 5723 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$ 1 res

 $wR(F^2) = 0.149$ H-att

 S = 1.06 $\Delta \rho_{mi}$

 3668 reflections
 $\Delta \rho_{mi}$

 211 parameters
 $\Delta \rho_{mi}$

3668 independent reflections 2831 reflections with $I > 2\sigma(I)$ $R_{int} = 0.015$

1 restraint H-atom parameters constrained $\Delta \rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.25 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O3−H3O···O4 ⁱ	0.84	1.78	2.6224 (16)	176
C1−H1···O1 ⁱⁱ	0.99	2.36	3.249 (2)	149
$C5-H5B\cdots O1^{ii}$	0.98	2.53	3.219 (2)	127
$C7 - H7A \cdots O3^{iii}$	0.98	2.55	3.368 (2)	141

Symmetry codes: (i) -x, -y + 2, -z + 1; (ii) x - 1, y, z; (iii) x + 1, y - 1, z.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *SHELXL97*.

The authors are grateful to the Australian Research Council for financial support. We also thank the Faculty of Science, University of Adelaide, for Postgraduate Scholarships to TDA and BWG.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2238).

References

Altomare, A., Cascarano, M., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Avery, T. D., Fallon, G., Greatrex, B. W., Pyke, S. M., Taylor, D. K. & Tiekink, E. R. T. (2001). J. Org. Chem. 66, 7955–7966.

Avery, T. D., Taylor, D. K. & Tiekink, E. R. T. (2000). J. Org. Chem. 65, 5531– 5546.

Brandenburg, K. (2006). *DIAMOND*. Release 3.1. Crystal Impact GbR, Bonn, Germany.

Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, o3344 [doi:10.1107/S1600536807030838]

(+)-(1R,2S,3R)-2-[(Benzyloxycarbonyl)methyl]-3-phenylcyclopropanecarboxylic acid

T. D. Avery, B. W. Greatrex, D. K. Taylor and E. R. T. Tiekink

Comment

The title compound (I) was synthesized in the course of an investigation of selective deprotections of cyclopropanes generated through the reaction of 1,2-dioxines and stabilized phosphorus ylides (Avery *et al.*, 2000, 2001). The molecular structure (Fig. 1) shows the carboxylic acid functional group at the C1 atom to lie to the opposite side of the cyclopropane ring to the substituents at the C2 and C3 atoms. Centrosymmetrically related molecules are connected by the familiar $\{\dots HOC=O\}_2$ synthon and these are connected into a double layer *via* C—H…O contacts (Table 1). The double layers thus formed stack along the c-direction, being separated by hydrophobic interactions (Fig. 2).

Experimental

To a solution of potassium carbonate (335 mg, 1.31 mmol) in water (10 ml) was added a solution of \pm (1*R*,2S,3*R*)-phenyl 2-(2-(benzyloxy)-2-oxoethyl)-3- phenylcyclopropanecarboxylate (950 mg, 2.46 mmol) in acetone (10 ml). The mixture was allowed to stir overnight after which time the acetone was removed *in vacuo* and the aqueous solution acidified (conc. HCl). The solution was then extracted with ethyl acetate (3 *x* 20 ml), dried (MgSO₄), filtered and the volatiles removed *in vacuo* to give a crude solid consisting of (I) and phenol. Phenol was removed by sublimation and the crude acid recrystallized (dichloromethane/hexanes) to give (I) (701 mg, 92%) as a colourless solid. *M*.p 409–411 K. Elemental analysis found: C 73.50, H, 5.97%; C₁₉H₁₈O₄ requires: C 73.53, H, 5.85%. IR: 2538, 1732, 1682, 1603, 1449, 1240, 1170, 961 cm^{-1.1}H NMR (CDCl₃, 300 MHz) δ 2.03 (t, J = 3.9 Hz, 1H), 2.15–2.26 (m, 3H), 2.91–3.00 (m, 1H), 5.03–5.12 (m, 2H), 7.15–7.34 (m, 10H), 12.20 (bs, 1H). ¹³C NMR (CDCl₃, 75 MHz) δ 24.5, 24.6, 31.3, 32.7, 66.4, 127.0, 128.2, 128.2, 128.4, 128.5, 128.8, 134.8, 135.6, 171.5, 179.6.

Refinement

All C-bound H atoms were included in the riding-model approximation, with C—H = 0.94 to 0.99 Å, and with $U_{iso}(H) = 1.5U_{eq}$ (methyl-C) or $1.2U_{eq}$ (remaining-C). The hydroxyl-H atoms were located from a difference map and included so that O—H = 0.84 Å and $U_{iso}(H) = 1.5U_{eq}(O)$.

Figures

Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2. View of the unit-cell contents of (I) highlighting the stacking of double layers along the c-direction. Hydrogen bonds are shown as orange-dashed lines. Colour code: red (oxy-gen), grey (carbon) and green (hydrogen).

(+)-(1R,2S,3R)-2-[(Benzyloxycarbonyl)methyl]-3-phenylcyclopropanecarboxylic acid

Crystal data	
$C_{19}H_{18}O_4$	Z = 2
$M_r = 310.33$	$F_{000} = 328$
Triclinic, PT	$D_{\rm x} = 1.288 \ {\rm Mg \ m}^{-3}$
Hall symbol: -P 1	Mo K α radiation $\lambda = 0.71069$ Å
a = 5.5550 (5) Å	Cell parameters from 1829 reflections
b = 8.9606 (8) Å	$\theta = 2.5 - 29.3^{\circ}$
c = 16.6586 (16) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\alpha = 101.698 \ (2)^{\circ}$	T = 223 (2) K
$\beta = 98.907 \ (2)^{\circ}$	Prism, colourless
$\gamma = 92.186 \ (2)^{\circ}$	$0.39\times0.09\times0.08~mm$
$V = 800.11 (13) \text{ Å}^3$	
Data collection	

Bruker SMART CCD area-detector diffractometer	2831 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.015$
Monochromator: graphite	$\theta_{\text{max}} = 27.5^{\circ}$
T = 223(2) K	$\theta_{\min} = 1.3^{\circ}$
ω and ϕ scans	$h = -6 \rightarrow 7$

Absorption correction: none	$k = -11 \rightarrow 11$
5723 measured reflections	$l = -16 \rightarrow 21$
3668 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.048$	H-atom parameters constrained
$wR(F^2) = 0.149$	$w = 1/[\sigma^2(F_0^2) + (0.0829P)^2 + 0.0916P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$
3668 reflections	$\Delta \rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$
211 parameters	$\Delta \rho_{min} = -0.25 \text{ e } \text{\AA}^{-3}$
1 restraint	Extinction correction: none
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.6349 (2)	0.36870 (14)	0.37643 (10)	0.0613 (4)
O2	0.3799 (2)	0.16367 (12)	0.36059 (7)	0.0399 (3)
O3	-0.1845 (2)	0.82536 (12)	0.46136 (7)	0.0394 (3)
H3O	-0.1801	0.9142	0.4903	0.059*
O4	0.1916 (2)	0.90033 (12)	0.44703 (8)	0.0452 (3)
C1	0.0252 (3)	0.65051 (15)	0.38033 (9)	0.0302 (3)
H1	-0.1308	0.5863	0.3652	0.036*
C2	0.2544 (3)	0.56716 (15)	0.39526 (9)	0.0303 (3)
H2	0.3883	0.6259	0.4373	0.036*
C3	0.1967 (3)	0.62665 (16)	0.31702 (9)	0.0310 (3)
H3	0.2983	0.7201	0.3174	0.037*
C4	0.0177 (3)	0.80346 (16)	0.43215 (9)	0.0304 (3)
C5	0.2214 (3)	0.40048 (16)	0.39673 (10)	0.0329 (3)
H5A	0.1921	0.3908	0.4520	0.040*

H5B	0.0766	0.3547	0.3565	0.040*
C6	0.4366 (3)	0.31359 (16)	0.37669 (9)	0.0311 (3)
C7	0.5724 (3)	0.06418 (18)	0.34375 (11)	0.0406 (4)
H7A	0.5573	-0.0223	0.3709	0.049*
H7B	0.7306	0.1202	0.3678	0.049*
C8	0.5662 (3)	0.00447 (18)	0.25231 (10)	0.0383 (4)
C9	0.3839 (4)	0.0327 (2)	0.19188 (12)	0.0541 (5)
Н9	0.2593	0.0952	0.2071	0.065*
C10	0.3848 (4)	-0.0311 (3)	0.10899 (13)	0.0675 (6)
H10	0.2614	-0.0104	0.0682	0.081*
C11	0.5631 (4)	-0.1240 (3)	0.08567 (13)	0.0633 (6)
H11	0.5609	-0.1678	0.0293	0.076*
C12	0.7448 (4)	-0.1528 (3)	0.14513 (14)	0.0658 (6)
H12	0.8676	-0.2164	0.1295	0.079*
C13	0.7477 (4)	-0.0882 (2)	0.22818 (12)	0.0528 (5)
H13	0.8740	-0.1073	0.2686	0.063*
C14	0.1254 (3)	0.52696 (17)	0.23264 (9)	0.0353 (3)
C15	0.2719 (4)	0.5390 (2)	0.17366 (11)	0.0518 (5)
H15	0.4093	0.6094	0.1877	0.062*
C16	0.2179 (4)	0.4483 (3)	0.09420 (12)	0.0691 (6)
H16	0.3182	0.4582	0.0547	0.083*
C17	0.0195 (4)	0.3443 (3)	0.07291 (12)	0.0686 (6)
H17	-0.0164	0.2829	0.0191	0.082*
C18	-0.1257 (4)	0.3304 (3)	0.13032 (13)	0.0642 (6)
H18	-0.2607	0.2582	0.1160	0.077*
C19	-0.0758 (3)	0.4221 (2)	0.20976 (11)	0.0493 (4)
H19	-0.1794	0.4128	0.2483	0.059*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0349 (7)	0.0366 (7)	0.1152 (12)	0.0015 (5)	0.0257 (7)	0.0124 (7)
O2	0.0382 (6)	0.0256 (5)	0.0574 (7)	0.0056 (4)	0.0150 (5)	0.0061 (5)
O3	0.0428 (6)	0.0286 (5)	0.0475 (7)	0.0068 (5)	0.0182 (5)	0.0005 (5)
O4	0.0479 (7)	0.0284 (6)	0.0572 (7)	-0.0027 (5)	0.0216 (5)	-0.0047 (5)
C1	0.0340 (7)	0.0239 (7)	0.0332 (7)	0.0029 (5)	0.0096 (6)	0.0038 (5)
C2	0.0310 (7)	0.0268 (7)	0.0324 (7)	0.0032 (5)	0.0071 (5)	0.0033 (5)
C3	0.0358 (7)	0.0248 (7)	0.0330 (7)	0.0025 (6)	0.0103 (6)	0.0042 (5)
C4	0.0380 (8)	0.0259 (7)	0.0298 (7)	0.0062 (6)	0.0101 (6)	0.0074 (5)
C5	0.0323 (7)	0.0287 (7)	0.0406 (8)	0.0048 (6)	0.0107 (6)	0.0096 (6)
C6	0.0326 (7)	0.0279 (7)	0.0339 (7)	0.0036 (6)	0.0069 (6)	0.0082 (6)
C7	0.0439 (9)	0.0315 (8)	0.0479 (9)	0.0129 (7)	0.0101 (7)	0.0084 (7)
C8	0.0393 (8)	0.0319 (8)	0.0453 (9)	0.0024 (6)	0.0102 (7)	0.0093 (6)
C9	0.0476 (10)	0.0559 (11)	0.0556 (11)	0.0108 (9)	0.0034 (8)	0.0068 (9)
C10	0.0643 (13)	0.0805 (15)	0.0504 (11)	0.0058 (11)	-0.0047 (10)	0.0078 (10)
C11	0.0728 (14)	0.0686 (14)	0.0447 (11)	-0.0010 (11)	0.0141 (10)	0.0006 (9)
C12	0.0713 (14)	0.0698 (14)	0.0608 (12)	0.0204 (11)	0.0308 (11)	0.0066 (10)
C13	0.0532 (11)	0.0608 (12)	0.0489 (10)	0.0212 (9)	0.0154 (8)	0.0132 (9)

C14	0.0412 (8)	0.0342 (8)	0.0311 (7)	0.0082 (6)	0.0088 (6)	0.0052 (6)
C15	0.0569 (11)	0.0581 (11)	0.0412 (9)	0.0003 (9)	0.0191 (8)	0.0048 (8)
C16	0.0796 (15)	0.0891 (16)	0.0400 (10)	0.0082 (13)	0.0283 (10)	0.0025 (10)
C17	0.0748 (14)	0.0848 (16)	0.0350 (10)	0.0105 (12)	0.0057 (9)	-0.0112 (10)
C18	0.0590 (12)	0.0728 (14)	0.0472 (11)	-0.0076 (10)	-0.0005 (9)	-0.0099 (9)
C19	0.0467 (9)	0.0589 (11)	0.0369 (9)	-0.0040 (8)	0.0085 (7)	-0.0018 (8)
					. ,	
Geometric paran	neters (Å, °)					
O1—C6		1.1910 (18)	C8—0	29	1.382	2 (3)
O2—C6		1.3309 (18)	С9—С	210	1.384	4 (3)
O2—C7		1.4424 (18)	C9—H	19	0.940	00
O3—C4		1.2978 (18)	C10—	C11	1.369	9(3)
O3—H3O		0.8401	C10—	H10	0.940	00
O4—C4		1.2338 (18)	C11—	C12	1.371	(3)
C1—C4		1.4701 (19)	C11—	H11	0.940	00
C1—C2		1.514 (2)	C12—	C13	1.385	5 (3)
C1—C3		1.5168 (19)	C12—	H12	0.940	00
C1—H1		0.9900	C13—	H13	0.940	00
C2—C3		1.500 (2)	C14—	C19	1.386	5 (2)
C2—C5		1.5035 (19)	C14—	C15	1.387	7 (2)
С2—Н2		0.9900	C15—	C16	1.387	7 (3)
C3—C14		1.491 (2)	C15—	H15	0.940	00
С3—Н3		0.9900	C16—	C17	1.369	9(3)
C5—C6		1.495 (2)	C16—	H16	0.940	00
C5—H5A		0.9800	C17—	C18	1.364	4 (3)
C5—H5B		0.9800	C17—	H17	0.940	00
С7—С8		1.503 (2)	C18—	C19	1.390) (2)
C7—H7A		0.9800	C18—	H18	0.940	00
С7—Н7В		0.9800	C19—	H19	0.940	00
C8—C13		1.386 (2)				
C6—O2—C7		117.49 (12)	H7A-	-С7—Н7В	107.8	3
C4—O3—H3O		110.5	C13—	C8—C9	118.8	30 (17)
C4—C1—C2		117.76 (12)	C13—	C8—C7	117.9	95 (15)
C4—C1—C3		119.46 (12)	С9—С	C8—C7	123.2	20 (15)
C2—C1—C3		59.35 (9)	C10—	C9—C8	120.0	03 (18)
C4—C1—H1		116.1	C10—	С9—Н9	120.0)
C2—C1—H1		116.1	C8—0	С9—Н9	120.0)
C3—C1—H1		116.1	C11—	С10—С9	120.9	9(2)
C3—C2—C5		122.65 (12)	C11—	С10—Н10	119.6)
C3—C2—C1		60.43 (9)	С9—С	С10—Н10	119.6	5
C5—C2—C1		117.10 (12)	C10—	C11—C12	119.5	57 (19)
С3—С2—Н2		115.2	C10—	C11—H11	120.2	2
С5—С2—Н2		115.2	C12—	C11—H11	120.2	2
C1—C2—H2		115.2	C11—	C12—C13	120.1	3 (19)
C14—C3—C2		123.86 (12)	C11—	C12—H12	119.9)
C14—C3—C1		122.54 (13)	C13—	C12—H12	119.9)
C2—C3—C1		60.22 (9)	C8—C	C13—C12	120.5	59 (18)
С14—С3—Н3		113.4	C8—C	С13—Н13	119.7	1

С2—С3—Н3	113.4	С12—С13—Н13	119.7
С1—С3—Н3	113.4	C19—C14—C15	118.04 (15)
O4—C4—O3	123.72 (13)	C19—C14—C3	124.23 (14)
O4—C4—C1	122.19 (13)	C15—C14—C3	117.73 (15)
O3—C4—C1	114.08 (13)	C14—C15—C16	120.75 (19)
C6—C5—C2	113.23 (12)	C14—C15—H15	119.6
С6—С5—Н5А	108.9	С16—С15—Н15	119.6
С2—С5—Н5А	108.9	C17—C16—C15	120.40 (19)
С6—С5—Н5В	108.9	С17—С16—Н16	119.8
С2—С5—Н5В	108.9	С15—С16—Н16	119.8
H5A—C5—H5B	107.7	C18—C17—C16	119.61 (18)
O1—C6—O2	123.53 (14)	С18—С17—Н17	120.2
O1—C6—C5	125.52 (14)	С16—С17—Н17	120.2
O2—C6—C5	110.94 (12)	C17—C18—C19	120.6 (2)
O2—C7—C8	112.59 (13)	C17—C18—H18	119.7
O2—C7—H7A	109.1	C19—C18—H18	119.7
С8—С7—Н7А	109.1	C14—C19—C18	120.60 (17)
O2—C7—H7B	109.1	С14—С19—Н19	119.7
С8—С7—Н7В	109.1	С18—С19—Н19	119.7
C4—C1—C2—C3	-109.52 (14)	02—C7—C8—C9	-4.8 (2)
C4—C1—C2—C5	136.49 (13)	C13—C8—C9—C10	0.0 (3)
C3—C1—C2—C5	-113.99 (14)	C7—C8—C9—C10	-177.41 (18)
C5—C2—C3—C14	-6.3 (2)	C8—C9—C10—C11	0.8 (3)
C1—C2—C3—C14	-111.25 (16)	C9—C10—C11—C12	-0.8 (4)
C5—C2—C3—C1	104.97 (15)	C10-C11-C12-C13	0.0 (4)
C4—C1—C3—C14	-139.96 (14)	C9—C8—C13—C12	-0.8 (3)
C2-C1-C3-C14	113.35 (15)	C7—C8—C13—C12	176.76 (18)
C4—C1—C3—C2	106.68 (15)	C11—C12—C13—C8	0.8 (3)
C2—C1—C4—O4	44.4 (2)	C2—C3—C14—C19	58.9 (2)
C3—C1—C4—O4	-24.3 (2)	C1—C3—C14—C19	-14.8 (2)
C2—C1—C4—O3	-134.54 (13)	C2-C3-C14-C15	-120.33 (17)
C3—C1—C4—O3	156.83 (13)	C1—C3—C14—C15	166.00 (15)
C3—C2—C5—C6	85.53 (17)	C19-C14-C15-C16	-0.1 (3)
C1—C2—C5—C6	156.23 (12)	C3—C14—C15—C16	179.20 (18)
C7—O2—C6—O1	1.3 (2)	C14—C15—C16—C17	-0.5 (4)
C7—O2—C6—C5	-177.29 (13)	C15-C16-C17-C18	0.1 (4)
C2—C5—C6—O1	15.3 (2)	C16—C17—C18—C19	0.8 (4)
C2—C5—C6—O2	-166.14 (12)	C15-C14-C19-C18	1.0 (3)
C6—O2—C7—C8	-98.97 (16)	C3—C14—C19—C18	-178.22 (18)
O2—C7—C8—C13	177.73 (15)	C17—C18—C19—C14	-1.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}\!\cdots\!\!A$
O3—H3O…O4 ⁱ	0.84	1.78	2.6224 (16)	176
C1—H1···O1 ⁱⁱ	0.99	2.36	3.249 (2)	149
C5—H5B···O1 ⁱⁱ	0.98	2.53	3.219 (2)	127
C7—H7A···O3 ⁱⁱⁱ	0.98	2.55	3.368 (2)	141

Symmetry codes: (i) -*x*, -*y*+2, -*z*+1; (ii) *x*-1, *y*, *z*; (iii) *x*+1, *y*-1, *z*.

